
ARM code in sideways ROMs

App note: ARM code in sideways ROMs

Introduction
This note describes how to formulate a sideways ROM which resides in the 6502 based host microcomputer
and which contains ARM code intended for the coprocessor. This can then be set to copy the code into the
ARM coprocessor at startup and run a language other than BASIC (the default).

Conventions used in this document
The following typographical conventions are used throughout this guide:
Hexadecimal numbers are prefixed with ampersand.
Decimal numbers have no prefix.
Binary numbers may be denoted with a leading percent and given in decending bit significant order (ie.for
an eight bit number they will be written in the order %76543210).
Multibyte data is stored in memory in little endian form.

Copyright
Econet is a registered trademark of Acorn Computers Ltd.
The term 'BBC' refers to the computer made for the BBC literacy project.

History
V0.10 First draft
V0.11 Changed example code to have the first two ARM instructions with the same condition code
V0.12 Renamed

ARM code in sideways ROMs

Behaviour
Default general coprocessor case
At startup the MOS sends round service call &FE if a coprocessor is detected, this is used by the
coprocessor as an opportunity to output its replacement startup banner, and it is used by the host to explode
the soft fonts (if appropriate for that machine) before the other workspace is allocated.

Following this the MOS sends round service call &FF to finish off any host related activities for the
coprocessor to work such as claiming the EventV, BRKV, and copying the Tube code into what would
normally be the language workspace in the host (zero page &00-&7F and &400-&700).

The remainder of the startup sequence proceeds as usual, filing systems are started, and the rest of the host's
workspace is allocated.

Lastly, the default language is selected (for the Master this is as configured in CMOS memory, otherwise it
is the ROM in the highest socket number). The language is copied across to the coprocessor taking into
account the relocation address, if given, and the language is entered at the relocation address.

Default ARM coprocessor case
This is the same as the general case, except that a special check is made for 6502 BASIC being copied into
the coprocessor as this cannot be run natively in ARM mode.

If the language copied across is seen to be any of BASIC I to BASIC IV then the "ARM Tube OS" will start
ARM BASIC V instead which is held in the flash memory on the coprocessor already. It assumes at this
point that the MOS has already printed the BASIC banner so backs up the cursor and prints the correct
banner in its place: as far as the MOS is concerned BASIC started normally.

Languages other than BASIC which are not marked as ARM code as detailed below will be faulted and the
coprocessor will default to a supervisor prompt, ready to accept commands

I cannot run this code

*
this allows software to be loaded from disc for example.

ARM coprocessor case with a sideways ROM containing ARM code
If the language copied across after service call &FF is marked as ARM code, the "ARM Tube OS" will
inspect the 6502 JMP instruction at the relocation address given in the sideways ROM (or &8000 if no
relocation is flagged) and branch to the language entry point as though the psuedo command

*GO ?&8001+(?&8002*256)

had been entered.

The address given after the 6502 JMP instruction must be a multiple of 4 as ARM code must be word
aligned. Additionally, the relocation address given in the sideways ROM header is effectively restricted to
the range &8000-&FFFC by this requirement as

• the application space starts at &8000 in the coprocessor
• there are only 2 bytes after the JMP instruction

however this is unlikely to cause a serious restriction as the size of language ROM held in a sideways ROM
is limited to 16kbytes (or possibly slightly more by compressing the ARM code and having it decompress
itself).

The bottom byte of the relocation address (if present) should be zero to ensure the whole sideways ROM
header is copied into the coprocessor, as some fields are inspected and checked by the "ARM Tube OS".

ARM code in sideways ROMs

Configuring the default language
Master series microcomputer
The default language selected at reset is stored in battery backed CMOS memory, using the command

*CONFIGURE LANG <rom id>

and the current setting can be displayed with
*STATUS LANG

normally this will be the BASIC language, whose rom id can be found using the command
*ROMS

It is taken into account on the next hard reset.

Model B and B+ microcomputers
The default language selected at reset is determined by the first language found, so the language in the
highest ROM socket will be used.

To avoid having to remove the lid repeatedly when switching the ARM coprocessor on or off, some careful
use of software on the language entry point (see example below) forces the MOS to use the next language
down when started as the processor type is not checked as rigourously as on the Master series.

ARM code in sideways ROMs

Example listing
The following listing includes an application which prints all of the letters of the alphabet then quits, it is
written in the assembly syntax expected by BBC BASIC V. Alternatively it could be translated into an
alternate assembly format to allow it to be mixed with code written in 'C' for example.

 REM Application written in ARM code residing in the host

 REM (C)2005 SPROW

 :

 DIM image% 512

 osby = &FFF4 : oswc = &FFEE

 :

 FOR X = 4 TO 6 STEP 2

 P% = &8000 : O% = image%

 [OPT X

 OPT FNjmp(language)

 OPT FNjmp(service)

 EQUB&CD \Denote language and service entries, and ARM code

 EQUBcopyright MOD256 \Offset to copyright string

 EQUB&01 \Version number divided by 10

 :

 .title

 EQUS"ALPHABET" \ROM title and hence language name too

 EQUB&00

 .version

 EQUS"0.11" \Version string

 EQUB&00

 :

 .copyright

 EQUB&00

 EQUS"(C)2005 SPROW" \Copyright string

 EQUB&00

 ALIGN

 :

 .language

 \The language entry point is entered in ARM mode, and possibly 6502 too

 EQUW &01C9 \6502="CMP#1"; ARM=harmless "MVNNES R0, R9, ASR#3"

 EQUW &11F0 \6502="BEQ langdown"

 EQUW &0060 \6502="RTS"; ARM=harmless "ANDNE R0, R0, R0, RRX"

 EQUW &1000 \6502=not executed

 B main_armcode \6502=not executed; ARM=branch to the real start

 :

 .langerr

 \A handy 9 byte gap to fill

 EQUS "?egaugnaL"

 .langdown

 \Someone's tried to enter the ROM on a 6502 processor, try the next ROM down

 EQUW &0BA9

 OPT FNjsr(oswc)

 OPT FNjsr(oswc)

 EQUW &00A0

 OPT FNldaay(title)

 EQUW &08F0

 EQUW &20A9

 OPT FNjsr(oswc)

ARM code in sideways ROMs

 EQUB &C8

 EQUW &F310

 EQUW &0DA9

 OPT FNjsr(oswc)

 EQUW &FFA0

 EQUW &00A2

 EQUW &AAA9

 OPT FNjsr(osby)

 EQUW &F286

 EQUW &F384

 EQUW &F4A4

 EQUB &88

 EQUW &F2B1

 EQUW &4029

 EQUW &07F0

 EQUB &98

 EQUB &AA

 EQUW &8EA9

 OPT FNjmp(osby)

 EQUB &88

 EQUW &F010

 EQUW &08A0

 OPT FNldaay(langerr)

 OPT FNjsr(oswc)

 EQUB &88

 EQUW &F710

 EQUW &FE30

 :

 .service

 \The service call handler is always running on the 6502 host, does nothing

 EQUB &60

 ALIGN

 :

 .main_armcode

 \Print the alphabet then return

 MOV R0, #ASC"A"

 .main_loop

 SWI "XOS_WriteC"

 BVS main_quit

 ADD R0, R0, #1

 CMP R0, #ASC"Z"

 BLS main_loop

 SWI "XOS_NewLine"

 .main_quit

 SWI "OS_Exit"

]

 NEXT

 OSCLI("SAVE OUTPUT " + STR$~(image%) + " " + STR$~(O%) + " 8000 FFFBBC00")

 END

 :

 DEF FNjsr(addr%):[OPT X:EQUB&20:EQUWaddr%:]:=X

 DEF FNldaay(addr%):[OPT X:EQUB&B9:EQUWaddr%:]:=X

 DEF FNjmp(addr%):[OPT X:EQUB&4C:EQUWaddr%:]:=X

