
Network programmer's API

Network programming information

Introduction
The Master 10/100 ethernet module includes onboard software that runs a TCP/IP network stack. This is
used by the supplied filing system, LANManFS, to share files with other computers on the network using
the SMB protocol.

However, SMB is just one protocol of the many hundreds that can be sent over the network, and this
document describes how access to the network can be included in other programs through use of a simple
OSWord application programmer's interface (API).

The OSWord is closely modelled on the 'Berkeley Sockets API' which is the most commonly used means of
writing network software, which should facilitate conversion of existing programs to work with the ethernet
module. A detailed explanation of the operation of Berkeley Sockets is not provided here, it is assumed that
the reader is familiar with their use.

Additional OSWord reason codes are provided to give access to the DNS portion of the network software to
allow resolution of domain names to computer addresses, though in principle this could also be
reimplemented directly using the API if desired.

Conventions used in this document
The following typographical conventions are used throughout this guide:
Hexadecimal numbers are prefixed with ampersand.
Decimal numbers have no prefix.
Binary numbers may be denoted with a leading percent and given in decending bit significant order (ie.for
an eight bit number they will be written in the order %76543210).

Copyright
Econet is a registered trademark of Acorn Computers Ltd.
The term 'BBC' refers to the computer made for the BBC literacy project.

History
V0.10 First draft
V0.15 Finalised available calls and refreshed the BASIC function examples
V0.16 Added a section on the implemented MSG_ flags for Socket_Send and Socket_Recv

Network programmer's API

Calling the network API
OSWord
All of the functions available from the network interface are accessed by called OSWord 192 (&C0).

During processing interrupts will be enabled, therefore this reason code must not be called from an interrupt
context and is not reentrant.

Use of the OSWord does not require the network filing system, LANManFS, to be the currently selected
filing system at the time - the OSWord is independant of this as it is dealt with by the LANManager
software.

Subreasons
To allow for many functions to be performed but without using up lots of OSWord numbers a one byte
subreason code is included, allowing for up to 256 different pieces of functionality.

The subreason codes are further split into groups of 64 each, with detailed descriptions later in this
document

&00-3F = Socket operations
&40-7F = Resolver operations
&80-BF = Reserved for future use
&C0-FF = Reserved for future use

unused or reserved subreason codes will return an error number at YX+3.

General format
On entry A = 192

X = low byte of address of a control block
Y = high byte of address of a control block
YX+0 = OSWord send block length (depends on subreason code)
YX+1 = OSWord return block length (depends on subreason code)
YX+2 = subreason code
YX+3 = must be zero
YX+4... = as required by the subreason code

On exit A = preserved
X = preserved
Y = preserved
YX+0 = preserved
YX+1 = preserved
YX+2 = set to zero
YX+3 = zero for OK, otherwise reports an error number
YX+4... = updated as determined by the subreason code

Note the first two values in the parameter block are required to instruct the Tube software how big the block
is when the OSWord is issued from a coprocessor. Due to a limitation in the host side of the Tube software
these values cannot exceed 128 bytes in either direction.

Presence
As LANManager zeros the reason code during the call it is possible to detect its presence by doing a
Socket_Close operation with a socket number of -1, which will never be a valid socket number, and look for
the YX+2 value changing.

Network programmer's API

Flags to Socket_Send and Socket_Recv
These two functions take optional flags which are a bit field of message options. The following three flags
are the only flags supported by the TCP/IP network stack, and are a subset of those available in a full
implementation of the Berkeley Sockets.

MSG_PEEK = 1 (flag bit 0)
The MSG_PEEK flag is used to receive data but not consume it from the network stack, this can be useful to
inspect the first few bytes of a message before deciding how to process the remainder with a second call to
the Socket_Recv function.

MSG_DONTWAIT = 8 (flag bit 3)
The MSG_DONTWAIT will use non blocking methods for Socket_Recv and return immediately, regardless
of how the socket is configured.

MSG_MORE = 16 (flag bit 4)
The MSG_MORE flag hints to the Socket_Send function that this is not the last data to be sent. In practice
this affects the state of the PSH flag in the TCP transaction, so that data can be more efficiently buffered.

Network programmer's API

Socket operations
Socket_Creat (&00)
Entry YX+4 = communications domain (2 for PF_INET)

YX+8 = socket type (1=stream; 2=datagram; 3=raw)
YX+12 = protocol, or zero for a default for the socket type chosen

Exit YX+4 = -1 if fails, otherwise the socket number created

C prototype int socket(int domain, int type, int protocol);

Description Create a new socket for subsequent use.
This function sets up a new socket and returns a handle for its future use. Only a limited number of sockets
can be opened simultaneously.

Socket_Bind (&01)
Entry YX+4 = socket

YX+8 = pointer to socket address to bind to
sa+0 = size of socket address (usually 16)
sa+1 = address family (2 for AF_INET)
sa+2 = port number
sa+4 = IPv4 address
sa+8 = zero
sa+12 = zero

YX+12 = size of socket address (usually 16)
Exit YX+4 = -1 if fails

C prototype int bind(int socket, struct sockaddr *addr, int size);

Description Bind a socket to a specific local address.
Note that the size of the socket address structure is used twice, once in the structure itself, and also as the
third parameter at YX+12.

Socket_Listen (&02)
Entry YX+4 = socket

YX+8 = backlog of unaccepted connections to allow before rejecting
Exit YX+4 = -1 if fails

C prototype int listen(int socket, int backlog);

Description Switch a socket into listening for incoming connection attempts.
Only sockets opened and configured to tbe stream based sockets can be set to listen, datagram and raw
sockets are connectionless and cannot be set to listen.

Network programmer's API

Socket_Accept (&03)
Entry YX+4 = socket

YX+8 = pointer to accepted address to fill
sa+0 = size of socket address (usually 16)
sa+1 = address family (2 for AF_INET)
sa+2 = port number
sa+4 = IPv4 address
sa+8 = zero
sa+12 = zero

YX+12 = pointer to an integer describing the size of socket address (usually 16)
Exit YX+4 = -1 if fails

C prototype int accept(int socket, struct sockaddr *addr, int *size);

Description Accept an incoming connection on an existing socket.
If there are no pending incoming connections this call will block until there is one. On accepting, the address
details of the remote computer will be filled in at the block pointed to by YX+8.

Socket_Connect (&04)
Entry YX+4 = socket

YX+8 = pointer to socket address to connect to
sa+0 = size of socket address (usually 16)
sa+1 = address family (2 for AF_INET)
sa+2 = port number
sa+4 = IPv4 address
sa+8 = zero
sa+12 = zero

YX+12 = size of socket address (usually 16)
Exit YX+4 = -1 if fails

C prototype int connect(int socket, struct sockaddr *addr, int size);

Description Connect a socket to a specific remote address.
For raw and datagram style sockets this just notes the socket address for future use, for stream style sockets
the remote computer is contacted to make the connection.

Socket_Recv (&05)
Entry YX+4 = socket

YX+8 = pointer to data buffer to receive into
YX+12 = buffer size
YX+16 = flags (usually 0)

Exit YX+4 = -1 if fails, otherwise number of bytes received

C prototype int recv(int socket, char *msg, int len, int flags);

Description Read data from the given socket.
This function attempts to read data or waits until some is ready. It is possible that zero bytes are returned,
probably indicating that the remote computer has disconnected.

Network programmer's API

Socket_Recvfrom (&06)
Not currently supported, returns an error.

Socket_Recvmsg (&07)
Not supported, returns an error.

Socket_Send (&08)
Entry YX+4 = socket

YX+8 = pointer to data buffer to send
YX+12 = buffer size
YX+16 = flags (usually 0)

Exit YX+4 = -1 if fails, otherwise number of bytes sent

C prototype int send(int socket, char *msg, int len, int flags);

Description Send out data on the given socket.
For raw and datagram style sockets the message length must fit within one packet otherwise the request will
be rejected, for stream style sockets as much as the message as possible will be queued and sent subject to
available memory.

Socket_Sendto (&09)
Not currently supported, returns an error.

Socket_Sendmsg (&0A)
Not supported, returns an error.

Socket_Shutdown (&0B)
Entry YX+4 = socket

YX+8 = direction to shut (0=receive side; 1=transmit side; 2=both sides)
Exit YX+4 = -1 if fails

C prototype int shutdown(int socket, int how);

Description Shutdown part of a socket.
This allows a socket to be partially shut where the TCP/IP stack supports this. Caution should be taken as
this does not actually close the socket, so does not free up any of the resources associated with the socket -
see details of Close for how to do this.

Socket_Setsockopt (&0C)
Not currently supported, returns an error.

Socket_Getsockopt (&0D)
Not currently supported, returns an error.

Socket_Getpeername (&0E)
Not currently supported, returns an error.

Socket_Getsockname (&0F)
Not currently supported, returns an error.

Network programmer's API

Socket_Close (&10)
Entry YX+4 = socket
Exit YX+4 = -1 if fails

C prototype int close(int socket);

Description Close a socket.
As there are fixed number of sockets available it is important to remember to close sockets once any
transactions are complete.

Socket_Select (&11)
Not supported, returns an error.

Socket_Ioctl (&12)
Not currently supported, returns an error.

Socket_Read (&13)
Not supported, returns an error.

Socket_Write (&14)
Not supported, returns an error.

Socket_Stat (&15)
Not supported, returns an error.

Socket_Readv (&16)
Not supported, returns an error.

Socket_Writev (&17)
Not supported, returns an error.

Network programmer's API

Resolver operations
Resolver_GetHostByName (&40)
Entry YX+8 = pointer to name to lookup
Exit YX+4 = pointer to name looked up

YX+8 = pointer to a null terminated list of pointers to aliases
YX+12 = IP address type returned (2 for AF_INET)
YX+16 = length of this address type (4 for IPv4)
YX+20 = pointer to a null terminated list of pointers to IP address(es)

C prototype hostent *GetHostByName(char *name);

Description Resolves a host name to a network address.
A control terminated name will be passed to the DNS resolver software built into the network module. This
call will then wait for a result, and only return when a match is found or timeout occurs. The returned block
at YX+8 onwards is a 'hostent' structure containing a list of IP addresses amongst other information, the lists
will remain valid until the next resolver request.

Resolver_GetHost (&41)
Entry YX+4 = pointer to name to lookup
Exit YX+4 = pointer to name looked up

YX+8 = pointer to a null terminated list of pointers to aliases
YX+12 = IP address type returned (2 for AF_INET)
YX+16 = length of this address type (4 for IPv4)
YX+20 = pointer to a null terminated list of pointers to IP address(es)

C prototype hostent *GetHost(char *name);

Description Resolves a host name to a network address.
This is very similar to GetHostByName except that it returns immediately. If the name is already in the DNS
cache the result will be filled in and YX+3 is zero, otherwise a request is issued and a 'resolver busy' error
returned. Further calls to GetHost will update YX+3 until either a timeout occurs or the name is found.
This allows the request to be sent and the foreground program continue operating, compare this with
GetHostByName which blocks until the name has been found.

Resolver_GetCache (&42)
Recognised, but does nothing, does not return an error.

Resolver_CacheControl (&43)
Recognised, but does nothing, does not return an error.

Network programmer's API

Example library functions
The following listing provides BASIC functions with the same names and parameters as the corresponding
function in most libraries for the 'C' programming language as a convenience for use.

 REM Network functions

 REM (C)2010 SPROW

 :

 DEFFNgethost(name$)

 wordblk?0=8:REM Parameters in

 wordblk?1=24:REM Parameters out

 wordblk?2=&41:REM Resolver_GetHost

 wordblk?3=0:REM No error on entry

 wordblk!4=nameblk

 $nameblk=name$

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 IFwordblk?3<>0 THEN=0

 =wordblk+4:REM Address not value

 :

 DEFFNcreat(pf%,type%,prot%)

 wordblk?0=16:REM Parameters in

 wordblk?1=8:REM Parameters out

 wordblk?2=&00:REM Socket_Creat

 wordblk?3=0:REM No error on entry

 wordblk!4=pf%

 wordblk!8=type%

 wordblk!12=prot%

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 IFwordblk?3<>0 THEN=-1

 =wordblk!4

 :

 DEFFNbind(handle%,addr%,addrlen%)

 wordblk?0=16:REM Parameters in

 wordblk?1=8:REM Parameters out

 wordblk?2=&01:REM Socket_Bind

 wordblk?3=0:REM No error on entry

 wordblk!4=handle%

 wordblk!8=addr%

 wordblk!12=addrlen%

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 IFwordblk?3<>0 THEN=-1

 =wordblk!4

 :

 DEFFNlisten(handle%,count%)

 wordblk?0=12:REM Parameters in

 wordblk?1=8:REM Parameters out

 wordblk?2=&02:REM Socket_Listen

 wordblk?3=0:REM No error on entry

 wordblk!4=handle%

 wordblk!8=count%

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 IFwordblk?3<>0 THEN=-1

 =wordblk!4

 :

 DEFFNaccept(handle%,addr%,addrlenblk%)

Network programmer's API

 wordblk?0=16:REM Parameters in

 wordblk?1=8:REM Parameters out

 wordblk?2=&03:REM Socket_Accept

 wordblk?3=0:REM No error on entry

 wordblk!4=handle%

 wordblk!8=addr%

 wordblk!12=addrlenblk%

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 IFwordblk?3<>0 THEN=-1

 =wordblk!4

 :

 DEFFNconnect(handle%,addr%,addrlen%)

 wordblk?0=16:REM Parameters in

 wordblk?1=8:REM Parameters out

 wordblk?2=&04:REM Socket_Connect

 wordblk?3=0:REM No error on entry

 wordblk!4=handle%

 wordblk!8=addr%

 wordblk!12=addrlen%

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 IFwordblk?3<>0 THEN=-1

 =wordblk!4

 :

 DEFFNrecv(handle%,data%,len%,opts%)

 wordblk?0=20:REM Parameters in

 wordblk?1=8:REM Parameters out

 wordblk?2=&05:REM Socket_Recv

 wordblk?3=0:REM No error on entry

 wordblk!4=handle%

 wordblk!8=data%

 wordblk!12=len%

 wordblk!16=opts%

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 IFwordblk?3<>0 THEN=-1

 =wordblk!4

 :

 DEFFNsend(handle%,data%,len%,opts%)

 wordblk?0=20:REM Parameters in

 wordblk?1=8:REM Parameters out

 wordblk?2=&08:REM Socket_Send

 wordblk?3=0:REM No error on entry

 wordblk!4=handle%

 wordblk!8=data%

 wordblk!12=len%

 wordblk!16=opts%

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 IFwordblk?3<>0 THEN=-1

 =wordblk!4

 :

 DEFPROCshutdown(handle%,type%)

 wordblk?0=12:REM Parameters in

 wordblk?1=4:REM Parameters out

 wordblk?2=&0B:REM Socket_Shutdown

 wordblk?3=0:REM No error on entry

 wordblk!4=handle%

Network programmer's API

 wordblk!8=type%

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 ENDPROC

 :

 DEFPROCclose(handle%)

 wordblk?0=8:REM Parameters in

 wordblk?1=4:REM Parameters out

 wordblk?2=&10:REM Socket_Close

 wordblk?3=0:REM No error on entry

 wordblk!4=handle%

 A%=192:X%=wordblk:Y%=wordblk DIV256:CALL&FFF1

 ENDPROC

